< Back to Search Results

Digital Twin Design Process for Efficient Development and Operation of a Customized Robot

Download White Paper

In a joint project MX3D, ABB, and Altair demonstrated how a 3D printed robot can be improved by using a digital twin process to achieve more precise positioning.

All Related White Papers

SIMULATION DRIVEN ANTENNA DESIGN TO MEET ENVIRONMENTAL SPECIFICATIONS

SIMULATION DRIVEN ANTENNA DESIGN TO MEET ENVIRONMENTAL SPECIFICATIONS

In this paper, we illustrate a simulation-driven workflow process using Altair HyperWorks Suite for antennas to meet environmental specifications during the design process so time taken for test and certification can be minimized and thus, cost savings and faster product development cycles.

White Papers
Using Multiphysics to Predict and Prevent EV Battery Fire

Using Multiphysics to Predict and Prevent EV Battery Fire

Electric vehicles (EV) offer the exciting possibility to meet the world’s transportation demands in an environmentally sustainable way. Mass adoption could help reduce our reliance on fossil fuels, but the lithium-ion (Li-on) batteries that power them still present unique challenges to designers and engineers, primary among them to ensuring safety against battery fire. To achieve vehicle manufacturer’s ambitious adoption goals, it is necessary to improve the safety of Li-on batteries by better understanding all of the complex, interconnected aspects of their behavior across both normal and extreme duty cycles. Altair is focused on developing a comprehensive understanding of automotive battery safety issues which it has named the Altair Battery Designer project. It combines innovative design methods and tools to model and predict mechanical damage phenomena as well as thermal and electro-chemical runaway. Altair has developed an efficient way to calculate mechanical and short-term thermal response to mechanical abuses, providing accurate computational models and engineer-friendly methods to design a better battery.

White Papers
E-motor Design using Multiphysics Optimization

E-motor Design using Multiphysics Optimization

Today, an e-motor cannot be developed just by looking at the motor as an isolated unit; tight requirements concerning the integration into both the complete electric or hybrid drivetrain system and perceived quality must be met. Multi-disciplinary and multiphysics optimization methodologies make it possible to design an e-motor for multiple, completely different design requirements simultaneously, thus avoiding a serial development strategy, where a larger number of design iterations are necessary to fulfill all requirements and unfavorable design compromises need to be accepted.

The project described in this paper is focused on multiphysics design of an e-motor for Porsche AG. Altair’s simulation-driven approach supports the development of e-motors using a series of optimization intensive phases building on each other. This technical paper offers insights on how the advanced drivetrain development team at Porsche AG, together with Altair, has approached the challenge of improving the total design balance in e-motor development.

White Papers
Have a Question? If you need assistance beyond what is provided above, please contact us.